Applying Ant Colony Optimization algorithms for high-level behavior learning and reproduction from demonstrations

نویسندگان

  • Benjamin Fonooni
  • Aleksandar Jevtic
  • Thomas Hellström
  • Lars-Erik Janlert
چکیده

In domains where robots carry out human’s tasks, the ability to learn new behaviors easily and quickly plays an important role. Two major challenges with Learning from Demonstration (LfD) are to identify what information in a demonstrated behavior requires attention by the robot, and to generalize the learned behavior such that the robot is able to perform the same behavior in novel situations. The main goal of this paper is to incorporate Ant Colony Optimization (ACO) algorithms into LfD in an approach that focuses on understanding tutor’s intentions and learning conditions to exhibit a behavior. The proposedmethod combines ACO algorithmswith semantic networks and spreading activationmechanism to reason and generalize the knowledge obtained through demonstrations. The approach also provides structures for behavior reproduction under new circumstances. Finally, applicability of the system in an object shape classification scenario is evaluated. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery by an Effective Ant Colony Optimization

One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common an...

متن کامل

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

Learning Fuzzy Rules Using Ant Colony Optimization Algorithms

Within the Linguistic Modeling field, one of the most important applications of Fuzzy Rule-Based Systems, the automatic learning from numerical data of the fuzzy linguistic rules composing these systems is an important task. In this paper we introduce a novel way of addressing the problem making use of Ant Colony Optimization (ACO) algorithms. To do so, the learning task will be formulated as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2015